关于晶振的相位噪声phase noise概念,晶诺威科技解释如下:
表示在波形的频域中,由相位(频率)的快速,短期,随机波动组成。这是由时域不稳定性(抖动)引起的。
确保不要将相位噪声与抖动混淆。
抖动jitter是一种描述晶振在时域中的稳定性的方法。它将所有噪声源组合在一起,并显示它们相对于时间的影响。
简而言之,晶振的相位噪声描述了晶振在频域中的稳定性,而晶振的抖动则描述了时域中的稳定性。
了解晶振相位噪声五步路径如下:
步骤1:光谱密度
频谱密度是在频域中信号功率强度的度量。 频谱密度提供了一种有用的方式来表征随机信号的幅度与频率含量。
在您选择的不同频率间隔上绘制每个频谱密度点时(在本例中为1Hz),您将看到一个如下图所示的图形:
步骤2:信号功率密度
所谓的噪声信号功率密度 。从开始到停止的图形的上边带,这称为“单边带”。
步骤3:噪声功率密度
现在,我们可以将单边带的绘制部分称为噪声(高于标称振荡器频率(Fosc)且与谐波无关的任何东西都可以视为相位噪声)。图中此部分的技术术语为“ 噪声功率密度”。由于要查找的范围较大,因此此时我们以dBW(LOG(Watts))为单位测量噪声功率密度。
步骤4:SSB噪声密度
当我们结合单边带和噪声功率密度时,实际上是在测量所谓的SSB(单边带)噪声密度。
步骤5:相位噪声
最后,我们可以在时域中观察到这一点,然后看到一个“抖动”波形,我们正在观察“抖动”。因为抖动远小于一个完整周期,所以可以说它是由“相位波动”(而不是频率波动)引起的。由于这些波动是噪声,因此实际上是 相位噪声。
所以SSB噪声密度=相位噪声,这就是相位噪声的来源。
造起相位噪声的原因
高端应用(例如,雷达通信,军事通信以及太空和卫星通信)中的相位噪声通常是由
- 高振动
- 微振动
- g力和加速度灵敏度
使用抗振动的g灵敏度晶振是消除所有这些潜在来源的相位噪声的最佳方法。
相位噪声测试:
相位噪声是指晶振输出频率中的相位误差。需使用相位噪声测试仪进行测试,评估晶振的短期稳定性和抗干扰能力,以确保其在各种条件下都能保持可靠的输出。
晶振中一些常见的相位噪声源如下:
- 随机噪声源:
- 热(约翰逊)噪声
- 散粒噪声
- 闪烁噪声(粉红色噪声)
- 晶体缺陷(老化)
拓展阅读:噪声 (Noise)、电磁干扰(EMI)与电磁兼容性(EMC)
噪声 (Noise) 一般是指不需要的声音或信息,尤其是电气通信领域涉及较多,杂音、电波干扰导致的画面错乱等都属于噪声。电子设备泄漏的电磁波被其它电子设备接收的话,也会产生噪声。
噪声分为自然噪声和人工噪声。自然噪声的产生源是落雷、空中放电、宇宙射线等。人工噪声的产生源是电子设备。电子设备分为广播发信器等有意发射电磁波的类型、收音机和电视等从内部泄漏电磁能量的类型,以及电动清扫机和工具等使用时会随之产生电磁波的类型。
汽车收音机在火车道口会发出杂音,原因是火车的缩放仪和电线间会产生电火花。在收音机天线旁点着电子打火机的话,会听到扬声器发出嗡的杂音,这是因为放电火花产生了噪声电波,雷放电引发通信干扰也是因为相同道理。马可尼发明的早期无线电设备利用高压放电火花产生的能量来发送摩尔斯电码的点线,当然,当时没有收音机和电视,因此也没有电子设备会受到干扰,但在如今就会成为恶性的电波公害。
电子设备的噪声问题并不能轻松解决。噪声问题的难点在于,它和电信号一样,都是电磁能量。如果某个系统需要的电磁能是其它系统不需要的,便会成为噪声,因此电子设备必定伴随着噪声。它们会经由电源线和信号线,或变为电磁波跨越空间,引发电子设备故障和性能下降。
随着微电子和数字技术的迅速发展,电路集成化和信号高频、低电流化逐步推进,电子设备即使遭遇微弱的噪声也会受到影响。噪声干扰有时会导致车辆控制故障、工业机器人故障等严重问题。
电脑和游戏机、微波炉等家用电子设备自身也会发出各种噪声,影响其他设备。对于医疗设备和心脏起搏器来说,手机发出的电波也属于重大噪声。噪声问题的特点在于,噪声干扰的受害者同时也会成为加害者。
因此电子设备就同时需要具备防止自身产生噪声的EMI (电磁干扰:Electro Magnetic Interference) 对策和防止自身受到影响的EMS (电磁敏感性: Electro Magnetic Susceptibility) 对策。这就叫做EMC (Electromagnetic Compatibility),即电磁兼容性。简单来说,就是需要同时采取措施应对Emission (发射) 问题和Immunity (免疫) 问题,即应对生成噪声和侵入噪声,兼顾两方面的方案就叫做EMC。